The regulatory role of natural killer cells in multiple sclerosis.
نویسندگان
چکیده
Multiple sclerosis is a chronic demyelinating disease of presumed autoimmune pathogenesis. The patients with multiple sclerosis typically shows alternating relapse and remission in the early stage of illness. We previously found that in the majority of multiple sclerosis patients in a state of remission, natural killer (NK) cells contain unusually high frequencies of the cells expressing CD95 (Fas) on their surface (>36.0%). Here we report that in such 'CD95+ NK-high' patients, NK cells may actively suppress potentially pathogenic autoimmune T cells that can mediate the inflammatory responses in the CNS. Using peripheral blood mononuclear cells (PBMCs) derived from 'CD95+ NK-high' or 'CD95+ NK-low' multiple sclerosis in a state of remission, we studied the effect of NK cell depletion on the memory T cell response to myelin basic protein (MBP), a major target antigen of multiple sclerosis. When we stimulated PBMCs of the 'CD95+ NK-high' multiple sclerosis after depleting CD56+ NK cells, a significant proportion of CD4+ T cells (1/2000 to 1/200) responded rapidly to MBP by secreting interferon (IFN)-gamma, whereas such a rapid T cell response to MBP could not be detected in the presence of NK cells. Nor did we detect the memory response to MBP in the 'CD95+ NK-low' multiple sclerosis patients in remission or healthy subjects, regardless of whether NK cells were depleted or not. Depletion of cells expressing CD16, another NK cell marker, also caused IFN-gamma secretion from MBP-reactive CD4+ T cells in the PBMCs from 'CD95+ NK-high' multiple sclerosis. Moreover, we showed that NK cells from 'CD95+ NK-high' multiple sclerosis could inhibit the antigen-driven secretion of IFN-gamma by autologous MBP-specific T cell clones in vitro. These results indicate that NK cells may regulate activation of autoimmune memory T cells in an antigen non-specific fashion to maintain the clinical remission in 'CD95(+) NK-high' multiple sclerosis patients.
منابع مشابه
Numerical status of CD4+CD25+FoxP3+ and CD8+CD28- regulatory T cells in multiple sclerosis
Objective(s): Regulatory T cells, including CD4+CD25+Fox3+ and CD8+CD28- cells play an important role in regulating the balance between immunity and tolerance. Since multiple sclerosis is an inflammatory autoimmune disease, regulatory T cells are considered to be involved in its pathogenesis. In this study, we investigated the circulatory numbers of the two mentioned types of regulatory T cells...
متن کاملRegulatory Functions of Natural Killer Cells in Multiple Sclerosis
There is increasing evidence that natural killer (NK) cells exhibit regulatory features. Among them, CD56bright NK cells have been suggested to play a major role in controlling T cell responses and maintaining homeostasis. Dysfunction in NK cell-mediated regulatory features has been recently described in untreated multiple sclerosis (MS), suggesting a contribution to MS pathogenesis. Moreover, ...
متن کاملP 140: Stem Cells in Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...
متن کاملO 1: The Effects of Vitamin D Supplementation on the T cell Compartment in Multiple Sclerosis
Multiple sclerosis (MS) is a complex neurological disease and its prevalence is about 2 million in the world. Neuroinflammation plays a key role in MS. Vitamins are essential nutrients that have effective role on immune system including activation of lymphocyte and differentiation of T-helper cell. Vitamin D is a micronutrient that is effective on immune function. Deficiently of Vitamin D is a ...
متن کاملP 152: Mesenchymal Stem Cells as a Therapeutic Target in Multiple Sclerosis
Neuroinflammation has a significant role in induce of Multiple sclerosis (MS) many approaches have been used to treat MS, but none of these methods have not been able to fully improve. One of the methods can suppress inflammation and regenerate the nervous system is the use of cell therapy. Using cell therapy in pre-clinic phase can be realized, it's mechanism and potency to suppress neuroinfla...
متن کاملMiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation
Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 127 Pt 9 شماره
صفحات -
تاریخ انتشار 2004